Glenny, R. W., S. L. Bernard and W. J. Lamm. Hemodynamic effects of 15-mu m-diameter microspheres on the rat pulmonary circulation. JOURNAL-OF-APPLIED-PHYSIOLOGY. 89:499-504, 2000.

The microsphere method has been used extensively to measure regional blood flow in large laboratory animals. A fundamental premise of the method is that microspheres do not alter regional flow or vascular tone. Whereas this assumption is accepted in large animals, it may not be valid in the pulmonary circulation of smaller animals. Three studies were performed to determine the hemodynamic effects of microspheres on the rat pulmonary circulation. Increasing numbers of 15-mu m-diameter microspheres were injected into a fully dilated, isolated-lung preparation. Vascular resistance increased 0.8% for every 100,000 microspheres injected. Microspheres were also injected into an isolated-lung preparation in which vascular tone was increased with hypoxia. Microspheres did not induce vasodilatation, as reported in other vascular beds. Fluorescent microspheres were injected via tail veins into awake rats, and the spatial locations of the microspheres were determined. Regional distributions remained highly correlated when microspheres of one color were injected after microspheres of another color. This indicates that the initial injection did not alter regional perfusion. We conclude that, when used in appropriate numbers, 15-mu m-diameter microspheres do not alter regional flow or vascular tone in the rat pulmonary circulation.